

Novel Techniques for Controlling Heat Transfer in a Continuous Casting Mould

Presenter: Dr Adam Hunt Director of Studies: Dr Bridget Stewart 27th February 2018

Excellence in Materials & Process Innovation

Background – Continuous Casting

Background – Traditional Heat Transfer

Project Outline – Problems with Fluoride

- Reduction in equipment life
- Uncertainty with the process
- Environmental Impact
- Thermodynamics limit the replacement of cuspidine phase

Can heat transfer be controlled without crystallisation?

Project Outline – Possible Solutions

Project Outline – Possible Solutions

- Where to add:
- On the steel surface with powder?
- Will it infiltrate into mould-strand gap?
- Effect on lubrication?

Coating on mould wall in the meniscus region

What does the coating need to do?

Thermal Resistance – Coating Specification

- Fluoride removal estimated to reduce total thermal resistance by 0.25 m².K.kW⁻¹
- Interfacial thermal resistance estimated to be 0.15 m².K.kW⁻¹ (1)
- Coating must increase thermal resistance by 167 %

¹ Hanao, M. and Kawamoto, M., Flux film in the mold of high speed continuous casting. ISIJ International, vol. 48 (2008), no. 2, pp. 180-185

How to test the coating performance?

Thermal Resistance – Methodology

Aaterials

 Device was designed and built to measure thermal resistance (R_{int}) and thermal conductivity

 Derivation of Fourier's Law used to calculate R_{int}

Thermal Resistance – Sample Preparation

 A defined volume of coating solution was applied to the copper surface and left for 12 hours to dry

Solution	Concentration	Gas Evolved	Amount 1	Amount 2	Amount 3	Amount 4	Amount 5
MgCO ₃ (aq)	120 g/l	CO ₂	0.2 mm	0.4 mm	0.6 mm	-	-
Na ₂ SiO ₃ (aq)	724 g/l	H ₂ O	0.2 mm	0.4 mm	0.6 mm	0.7 mm	0.8 mm

Table I. Coatings used in investigation

Magnesium carbonate coating

Waterglass coating

Mould flux preparation

How did the coatings perform?

Did the waterglass coating meet the target?

Copper Finger – Methodology

Thermocouples

 ΔT of cooling water and water flowrate used to calculate heat flux (kW.m⁻²)

Further Work

• Patent application

submitted May 2016, published and awaiting final grant

- Discussion of European collaboration to develop coatings further
- Pilot plant trials to assess durability and effect of ferro-static pressure
- **Optimisation** of coating composition

Conclusions

- Introduction of **porosity** into a glassy mould flux can be used to control heat transfer during continuous casting
- To use glassy mould fluxes with crack prone steel grades, reactive coatings must increase interfacial thermal resistance by 167 %
- Waterglass coating **met and exceeded** target value
- Waterglass shown to create **significant** porosity in mould flux at casting temperatures

Acknowledgments

- Financial Support:
- EPSRC & Tata Steel UK for funding PhD studentship

- Technical Discussions:
- Prof Simon Hodgson, Dr Paul Shelton, and Dr Tannaz Pak,
- Teesside University
- Alan Scholes, Materials Processing Institute
- Prof Ken Mills, Imperial College
- Dr Arghya Dey, Tata Steel

Thank You

Materials Processing Institute Eston Road Middlesbrough Cleveland TS6 6US United Kingdom

+44 (0)1642 382000 enquiries@mpiuk.com

www.mpiuk.com

